
Solutions - Quiz 4

(November 26th @ 5:30 pm)

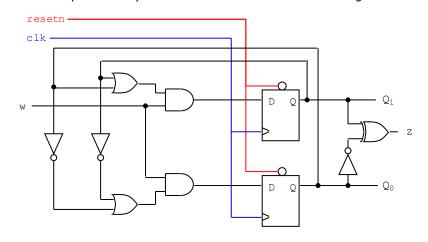
PROBLEM 1 (30 PTS)

Draw the state diagram (in ASM form) of the FSM whose VHDL description is listed below:

```
entity circ is
   port ( clk, rstn: in std_logic;
        a, b: in std_logic;
        x,w,z: out std_logic);
end circ;
```



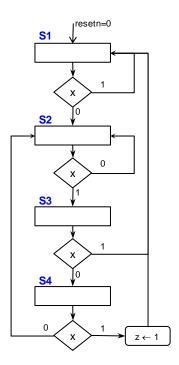
```
architecture behavioral of circ is
   type state is (S1, S2, S3);
   signal y: state;
begin
  Transitions: process (rstn, clk, a, b)
  begin
     if rstn = '0' then y <= S1;
     elsif (clk'event and clk = '1') then
        case v is
            when S1 =>
              if b = '1' then y <= S2;
               else if a = '1' then y \le S3; else y \le S1; end if;
               end if;
             when S2 =>
                if a = '1' then y <= S2; else y <= S1; end if;
             when S3 =>
                if b = '1' then y \le S3; else y \le S1; end if;
        end case;
     end if;
  end process;
  Outputs: process (y,a)
  begin
      x <= '0'; w <= '0'; z <= '0';
      case y is
         when S1 \Rightarrow if b = 0' then z <= 1'; end if;
         when S2 \Rightarrow x \Leftarrow '1';
         when S3 \Rightarrow if a \Rightarrow '1' then w \iff '1'; end if;
      end case;
  end process;
end behavioral;
```


PROBLEM 2 (40 PTS)

• Provide the excitation equations (including the Boolean equation for z) and the Excitation Table for the following FSM:

1

$$\begin{aligned} &Q_1(t+1) \leftarrow \left(\underline{Q_1(t)} + \underline{Q_0(t)}\right) w \\ &Q_0(t+1) \leftarrow \overline{Q_1(t)} \underline{Q_0(t)} w \\ &z = \overline{Q_1(t)} \oplus \underline{Q_0(t)} \end{aligned}$$


PR	ESE	NT STATE	NEXTSTATE		
W	Q_1Q	2 ₀ (t)	Q ₁	Q ₀ (t+1)	Z
0	0	0	0	0	1
0	0	1	0	0	0
0	1	0	0	0	0
0	1	1	0	0	1
1	0	0	0	1	1
1	0	1	1	1	0
1	1	0	1	1	0
1	1	1	1	0	1

Is this a Mealy or a Moore FSM? Why? (5 pts)
 The output z only depends on the present state. Thus, it is a Moore FSM.

PROBLEM 3 (30 PTS)

• Sequence detector: Draw the state diagram (any representation) of an FSM with input x and output z. The detector asserts z = 1 when the sequence 0101 is detected. Right after the sequence is detected, the circuit looks for a new sequence.

2